Researchers at the University of Texas say it is possible to hike the energy yield of solar cells by exploiting what they call a photon's "shadow state", doubling the number of electrons that may be harvested in the process. They claim the discovery could up the theoretical maximum efficiency of silicon solar cells from 31 to 44 percent.
Prior research led by chemist Xiaoyang Zhu demonstrated that a theoretical increase in efficiency to as high as 66 percent would be possible if solar cells could be made to additionally harvest so-called "hot electrons", residual heat energy that is lost within about a picosecond after a cell absorbs a photon. Zhu then found that this was possible, but only when harvesting photons from "highly focused" sunlight, impractical in real-world applications.
Prior research led by chemist Xiaoyang Zhu demonstrated that a theoretical increase in efficiency to as high as 66 percent would be possible if solar cells could be made to additionally harvest so-called "hot electrons", residual heat energy that is lost within about a picosecond after a cell absorbs a photon. Zhu then found that this was possible, but only when harvesting photons from "highly focused" sunlight, impractical in real-world applications.
No comments:
Post a Comment